- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Xingyue (2)
-
Bian, Qi (1)
-
Chen, Aixi (1)
-
Chen, Rong-Rong (1)
-
Cheng, Zhengwang (1)
-
Gao, Jianzhi (1)
-
Ji, Mingyue (1)
-
Lei, Xiaoxu (1)
-
Li, Fang-Sen (1)
-
Li, Shaojian (1)
-
Li, Xiaoyin (1)
-
Liu, Feng (1)
-
Pan, Minghu (1)
-
Wang, Pengdong (1)
-
Woolsey, Nicholas (1)
-
Yuan, Bingkai (1)
-
Zhang, Xin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Woolsey, Nicholas; Wang, Xingyue; Chen, Rong-Rong; Ji, Mingyue (, IEEE Transactions on Cloud Computing)null (Ed.)We propose a flexible low complexity design (FLCD) of coded distributed computing (CDC) with empirical evaluation on Amazon Elastic Compute Cloud (Amazon EC2). CDC can expedite MapReduce like computation by trading increased map computations to reduce communication load and shuffle time. A main novelty of FLCD is to utilize the design freedom in defining map and reduce functions to develop asymptotic homogeneous systems to support varying intermediate values (IV) sizes under a general MapReduce framework. Compared to existing designs with constant IV sizes, FLCD offers greater flexibility in adapting to network parameters and significantly reduces the implementation complexity by requiring fewer input files and shuffle groups. The FLCD scheme is the first proposed low-complexity CDC design that can operate on a network with an arbitrary number of nodes and computation load. We perform empirical evaluations of the FLCD by executing the TeraSort algorithm on an Amazon EC2 cluster. This is the first time that theoretical predictions of the CDC shuffle time are validated by empirical evaluations. The evaluations demonstrate a 2.0 to 4.24 speedup compared to conventional uncoded MapReduce, a 12% to 52% reduction in total time, and a wider range of operating network parameters compared to existing CDC schemes.more » « less
An official website of the United States government
